ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.04802
279
10741
v1v2v3v4v5 (latest)

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

15 September 2016
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
Alejandro Acosta
Andrew P. Aitken
Alykhan Tejani
J. Totz
    GAN
ArXiv (abs)PDFHTML
Abstract

Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? During image downsampling information is lost, making super-resolution a highly ill-posed inverse problem with a large set of possible solutions. The behavior of optimization-based super-resolution methods is therefore principally driven by the choice of objective function. Recent work has largely focussed on minimizing the mean squared reconstruction error (MSE). The resulting estimates have high peak signal-to-noise-ratio (PSNR), but they are often overly smoothed, lack high-frequency detail, making them perceptually unsatisfying. In this paper, we present super-resolution generative adversarial network (SRGAN). To our knowledge, it is the first framework capable of recovering photo-realistic natural images from 4 times downsampling. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss function motivated by perceptual similarity instead of similarity in pixel space. Trained on 350K images using the perceptual loss function, our deep residual network was able to recover photo-realistic textures from heavily downsampled images on public benchmarks.

View on arXiv
Comments on this paper