ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.03348
41
0
v1v2v3v4 (latest)

A Threshold-based Scheme for Reinforcement Learning in Neural Networks

12 September 2016
Thomas H. Ward
ArXiv (abs)PDFHTML
Abstract

A generic and scalable Reinforcement Learning scheme for Artificial Neural Networks is presented, providing a general purpose learning machine. By reference to a node threshold three features are described 1) A mechanism for Primary Reinforcement, capable of solving linearly inseparable problems 2) The learning scheme is extended to include a mechanism for Conditioned Reinforcement, capable of forming long term strategy 3) The learning scheme is modified to use a threshold-based deep learning algorithm, providing a robust and biologically inspired alternative to backpropagation. The model may be used for supervised as well as unsupervised training regimes.

View on arXiv
Comments on this paper