ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.03058
13
55

A Tube-and-Droplet-based Approach for Representing and Analyzing Motion Trajectories

10 September 2016
Weiyao Lin
Yang Zhou
Hongteng Xu
Junchi Yan
Mingliang Xu
Jianxin Wu
Zicheng Liu
ArXivPDFHTML
Abstract

Trajectory analysis is essential in many applications. In this paper, we address the problem of representing motion trajectories in a highly informative way, and consequently utilize it for analyzing trajectories. Our approach first leverages the complete information from given trajectories to construct a thermal transfer field which provides a context-rich way to describe the global motion pattern in a scene. Then, a 3D tube is derived which depicts an input trajectory by integrating its surrounding motion patterns contained in the thermal transfer field. The 3D tube effectively: 1) maintains the movement information of a trajectory, 2) embeds the complete contextual motion pattern around a trajectory, 3) visualizes information about a trajectory in a clear and unified way. We further introduce a droplet-based process. It derives a droplet vector from a 3D tube, so as to characterize the high-dimensional 3D tube information in a simple but effective way. Finally, we apply our tube-and-droplet representation to trajectory analysis applications including trajectory clustering, trajectory classification & abnormality detection, and 3D action recognition. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our approach.

View on arXiv
Comments on this paper