ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.02700
21
13

Efficient batch-sequential Bayesian optimization with moments of truncated Gaussian vectors

9 September 2016
Sébastien Marmin
C. Chevalier
D. Ginsbourger
ArXivPDFHTML
Abstract

We deal with the efficient parallelization of Bayesian global optimization algorithms, and more specifically of those based on the expected improvement criterion and its variants. A closed form formula relying on multivariate Gaussian cumulative distribution functions is established for a generalized version of the multipoint expected improvement criterion. In turn, the latter relies on intermediate results that could be of independent interest concerning moments of truncated Gaussian vectors. The obtained expansion of the criterion enables studying its differentiability with respect to point batches and calculating the corresponding gradient in closed form. Furthermore , we derive fast numerical approximations of this gradient and propose efficient batch optimization strategies. Numerical experiments illustrate that the proposed approaches enable computational savings of between one and two order of magnitudes, hence enabling derivative-based batch-sequential acquisition function maximization to become a practically implementable and efficient standard.

View on arXiv
Comments on this paper