ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.08434
8
25

Multi-Class Multi-Object Tracking using Changing Point Detection

30 August 2016
Byungjae Lee
Enkhbayar Erdenee
SongGuo Jin
P. Rhee
    VOT
ArXivPDFHTML
Abstract

This paper presents a robust multi-class multi-object tracking (MCMOT) formulated by a Bayesian filtering framework. Multi-object tracking for unlimited object classes is conducted by combining detection responses and changing point detection (CPD) algorithm. The CPD model is used to observe abrupt or abnormal changes due to a drift and an occlusion based spatiotemporal characteristics of track states. The ensemble of convolutional neural network (CNN) based object detector and Lucas-Kanede Tracker (KLT) based motion detector is employed to compute the likelihoods of foreground regions as the detection responses of different object classes. Extensive experiments are performed using lately introduced challenging benchmark videos; ImageNet VID and MOT benchmark dataset. The comparison to state-of-the-art video tracking techniques shows very encouraging results.

View on arXiv
Comments on this paper