ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.08395
12
5

Motion Representation with Acceleration Images

30 August 2016
Hirokatsu Kataoka
Yun He
Soma Shirakabe
Y. Satoh
ArXivPDFHTML
Abstract

Information of time differentiation is extremely important cue for a motion representation. We have applied first-order differential velocity from a positional information, moreover we believe that second-order differential acceleration is also a significant feature in a motion representation. However, an acceleration image based on a typical optical flow includes motion noises. We have not employed the acceleration image because the noises are too strong to catch an effective motion feature in an image sequence. On one hand, the recent convolutional neural networks (CNN) are robust against input noises. In this paper, we employ acceleration-stream in addition to the spatial- and temporal-stream based on the two-stream CNN. We clearly show the effectiveness of adding the acceleration stream to the two-stream CNN.

View on arXiv
Comments on this paper