ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.08336
11
7

Low-rank Multi-view Clustering in Third-Order Tensor Space

30 August 2016
Ming Yin
Junbin Gao
Shengli Xie
Yi Guo
ArXivPDFHTML
Abstract

The plenty information from multiple views data as well as the complementary information among different views are usually beneficial to various tasks, e.g., clustering, classification, de-noising. Multi-view subspace clustering is based on the fact that the multi-view data are generated from a latent subspace. To recover the underlying subspace structure, the success of the sparse and/or low-rank subspace clustering has been witnessed recently. Despite some state-of-the-art subspace clustering approaches can numerically handle multi-view data, by simultaneously exploring all possible pairwise correlation within views, the high order statistics is often disregarded which can only be captured by simultaneously utilizing all views. As a consequence, the clustering performance for multi-view data is compromised. To address this issue, in this paper, a novel multi-view clustering method is proposed by using \textit{t-product} in third-order tensor space. Based on the circular convolution operation, multi-view data can be effectively represented by a \textit{t-linear} combination with sparse and low-rank penalty using "self-expressiveness". Our extensive experimental results on facial, object, digits image and text data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of many criteria.

View on arXiv
Comments on this paper