LIVEJoin the current RTAI Connect sessionJoin now

17
3

Infinite-Label Learning with Semantic Output Codes

Abstract

We develop a new statistical machine learning paradigm, named infinite-label learning, to annotate a data point with more than one relevant labels from a candidate set, which pools both the finite labels observed at training and a potentially infinite number of previously unseen labels. The infinite-label learning fundamentally expands the scope of conventional multi-label learning, and better models the practical requirements in various real-world applications, such as image tagging, ads-query association, and article categorization. However, how can we learn a labeling function that is capable of assigning to a data point the labels omitted from the training set? To answer the question, we seek some clues from the recent work on zero-shot learning, where the key is to represent a class/label by a vector of semantic codes, as opposed to treating them as atomic labels. We validate the infinite-label learning by a PAC bound in theory and some empirical studies on both synthetic and real data.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.