ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.05810
24
0

Unifying Markov Properties for Graphical Models

20 August 2016
Steffen Lauritzen
Kayvan Sadeghi
ArXivPDFHTML
Abstract

Several types of graphs with different conditional independence interpretations --- also known as Markov properties --- have been proposed and used in graphical models. In this paper we unify these Markov properties by introducing a class of graphs with four types of edges --- lines, arrows, arcs, and dotted lines --- and a single separation criterion. We show that independence structures defined by this class specialize to each of the previously defined cases, when suitable subclasses of graphs are considered. In addition, we define a pairwise Markov property for the subclass of chain mixed graphs which includes chain graphs with the LWF interpretation, as well as summary graphs (and consequently ancestral graphs). We prove the equivalence of this pairwise Markov property to the global Markov property for compositional graphoid independence models.

View on arXiv
Comments on this paper