ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.05246
7
124

How Image Degradations Affect Deep CNN-based Face Recognition?

18 August 2016
Samil Karahan
M. Yildirim
K. Kirtaç
F. Rende
Gultekin Butun
H. K. Ekenel
    CVBM
ArXivPDFHTML
Abstract

Face recognition approaches that are based on deep convolutional neural networks (CNN) have been dominating the field. The performance improvements they have provided in the so called in-the-wild datasets are significant, however, their performance under image quality degradations have not been assessed, yet. This is particularly important, since in real-world face recognition applications, images may contain various kinds of degradations due to motion blur, noise, compression artifacts, color distortions, and occlusion. In this work, we have addressed this problem and analyzed the influence of these image degradations on the performance of deep CNN-based face recognition approaches using the standard LFW closed-set identification protocol. We have evaluated three popular deep CNN models, namely, the AlexNet, VGG-Face, and GoogLeNet. Results have indicated that blur, noise, and occlusion cause a significant decrease in performance, while deep CNN models are found to be robust to distortions, such as color distortions and change in color balance.

View on arXiv
Comments on this paper