ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.04642
11
6

Temporally Consistent Motion Segmentation from RGB-D Video

16 August 2016
Peter Bertholet
A. Ichim
Matthias Zwicker
    VOS
ArXivPDFHTML
Abstract

We present a method for temporally consistent motion segmentation from RGB-D videos assuming a piecewise rigid motion model. We formulate global energies over entire RGB-D sequences in terms of the segmentation of each frame into a number of objects, and the rigid motion of each object through the sequence. We develop a novel initialization procedure that clusters feature tracks obtained from the RGB data by leveraging the depth information. We minimize the energy using a coordinate descent approach that includes novel techniques to assemble object motion hypotheses. A main benefit of our approach is that it enables us to fuse consistently labeled object segments from all RGB-D frames of an input sequence into individual 3D object reconstructions.

View on arXiv
Comments on this paper