ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.03352
13
10

Some Contributions to Sequential Monte Carlo Methods for Option Pricing

11 August 2016
Deborshee Sen
Ajay Jasra
Yan Zhou
ArXivPDFHTML
Abstract

Pricing options is an important problem in financial engineering. In many scenarios of practical interest, financial option prices associated to an underlying asset reduces to computing an expectation w.r.t.~a diffusion process. In general, these expectations cannot be calculated analytically, and one way to approximate these quantities is via the Monte Carlo method; Monte Carlo methods have been used to price options since at least the 1970's. It has been seen in Del Moral, P. \& Shevchenko, P.V. (2014) `Valuation of barrier options using Sequential Monte Carlo' and Jasra, A. \& Del Moral, P. (2011) `Sequential Monte Carlo for option pricing' that Sequential Monte Carlo (SMC) methods are a natural tool to apply in this context and can vastly improve over standard Monte Carlo. In this article, in a similar spirit to Del Moral, P. \& Shevchenko, P.V. (2014) `Valuation of barrier options using sequential Monte Carlo' and Jasra, A. \& Del Moral, P. (2011) `Sequential Monte Carlo for option pricing' we show that one can achieve significant gains by using SMC methods by constructing a sequence of artificial target densities over time. In particular, we approximate the optimal importance sampling distribution in the SMC algorithm by using a sequence of weighting functions. This is demonstrated on two examples, barrier options and target accrual redemption notes (TARN's). We also provide a proof of unbiasedness of our SMC estimate.

View on arXiv
Comments on this paper