ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.02715
16
109

A deep language model for software code

9 August 2016
K. Dam
T. Tran
Trang Pham
ArXivPDFHTML
Abstract

Existing language models such as n-grams for software code often fail to capture a long context where dependent code elements scatter far apart. In this paper, we propose a novel approach to build a language model for software code to address this particular issue. Our language model, partly inspired by human memory, is built upon the powerful deep learning-based Long Short Term Memory architecture that is capable of learning long-term dependencies which occur frequently in software code. Results from our intrinsic evaluation on a corpus of Java projects have demonstrated the effectiveness of our language model. This work contributes to realizing our vision for DeepSoft, an end-to-end, generic deep learning-based framework for modeling software and its development process.

View on arXiv
Comments on this paper