ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.02214
21
88

Robsut Wrod Reocginiton via semi-Character Recurrent Neural Network

7 August 2016
Keisuke Sakaguchi
Kevin Duh
Matt Post
Benjamin Van Durme
ArXivPDFHTML
Abstract

Language processing mechanism by humans is generally more robust than computers. The Cmabrigde Uinervtisy (Cambridge University) effect from the psycholinguistics literature has demonstrated such a robust word processing mechanism, where jumbled words (e.g. Cmabrigde / Cambridge) are recognized with little cost. On the other hand, computational models for word recognition (e.g. spelling checkers) perform poorly on data with such noise. Inspired by the findings from the Cmabrigde Uinervtisy effect, we propose a word recognition model based on a semi-character level recurrent neural network (scRNN). In our experiments, we demonstrate that scRNN has significantly more robust performance in word spelling correction (i.e. word recognition) compared to existing spelling checkers and character-based convolutional neural network. Furthermore, we demonstrate that the model is cognitively plausible by replicating a psycholinguistics experiment about human reading difficulty using our model.

View on arXiv
Comments on this paper