37
17

Video Summarization in a Multi-View Camera Network

Abstract

While most existing video summarization approaches aim to extract an informative summary of a single video, we propose a novel framework for summarizing multi-view videos by exploiting both intra- and inter-view content correlations in a joint embedding space. We learn the embedding by minimizing an objective function that has two terms: one due to intra-view correlations and another due to inter-view correlations across the multiple views. The solution can be obtained directly by solving one Eigen-value problem that is linear in the number of multi-view videos. We then employ a sparse representative selection approach over the learned embedding space to summarize the multi-view videos. Experimental results on several benchmark datasets demonstrate that our proposed approach clearly outperforms the state-of-the-art.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.