55
20

Binary Hashing with Semidefinite Relaxation and Augmented Lagrangian

Abstract

This paper proposes two approaches for inferencing binary codes in two-step (supervised, unsupervised) hashing. We first introduce an unified formulation for both supervised and unsupervised hashing. Then, we cast the learning of one bit as a Binary Quadratic Problem (BQP). We propose two approaches to solve BQP. In the first approach, we relax BQP as a semidefinite programming problem which its global optimum can be achieved. We theoretically prove that the objective value of the binary solution achieved by this approach is well bounded. In the second approach, we propose an augmented Lagrangian based approach to solve BQP directly without relaxing the binary constraint. Experimental results on three benchmark datasets show that our proposed methods compare favorably with the state of the art.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.