ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.04576
6
2

Neural Discourse Modeling of Conversations

15 July 2016
J. Pierre
M. Butler
Jacob Portnoff
Luis Aguilar
ArXivPDFHTML
Abstract

Deep neural networks have shown recent promise in many language-related tasks such as the modeling of conversations. We extend RNN-based sequence to sequence models to capture the long range discourse across many turns of conversation. We perform a sensitivity analysis on how much additional context affects performance, and provide quantitative and qualitative evidence that these models are able to capture discourse relationships across multiple utterances. Our results quantifies how adding an additional RNN layer for modeling discourse improves the quality of output utterances and providing more of the previous conversation as input also improves performance. By searching the generated outputs for specific discourse markers we show how neural discourse models can exhibit increased coherence and cohesion in conversations.

View on arXiv
Comments on this paper