ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.03780
23
21

A Vector Space for Distributional Semantics for Entailment

13 July 2016
James Henderson
Diana Nicoleta Popa
ArXivPDFHTML
Abstract

Distributional semantics creates vector-space representations that capture many forms of semantic similarity, but their relation to semantic entailment has been less clear. We propose a vector-space model which provides a formal foundation for a distributional semantics of entailment. Using a mean-field approximation, we develop approximate inference procedures and entailment operators over vectors of probabilities of features being known (versus unknown). We use this framework to reinterpret an existing distributional-semantic model (Word2Vec) as approximating an entailment-based model of the distributions of words in contexts, thereby predicting lexical entailment relations. In both unsupervised and semi-supervised experiments on hyponymy detection, we get substantial improvements over previous results.

View on arXiv
Comments on this paper