ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.00034
30
9

Ballpark Learning: Estimating Labels from Rough Group Comparisons

30 June 2016
Tom Hope
Dafna Shahaf
ArXiv (abs)PDFHTML
Abstract

We are interested in estimating individual labels given only coarse, aggregated signal over the data points. In our setting, we receive sets ("bags") of unlabeled instances with constraints on label proportions. We relax the unrealistic assumption of known label proportions, made in previous work; instead, we assume only to have upper and lower bounds, and constraints on bag differences. We motivate the problem, propose an intuitive formulation and algorithm, and apply our methods to real-world scenarios. Across several domains, we show how using only proportion constraints and no labeled examples, we can achieve surprisingly high accuracy. In particular, we demonstrate how to predict income level using rough stereotypes and how to perform sentiment analysis using very little information. We also apply our method to guide exploratory analysis, recovering geographical differences in twitter dialect.

View on arXiv
Comments on this paper