ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.08531
28
9

A Learning Algorithm for Relational Logistic Regression: Preliminary Results

28 June 2016
Bahare Fatemi
Seyed Mehran Kazemi
David Poole
ArXiv (abs)PDFHTML
Abstract

Relational logistic regression (RLR) is a representation of conditional probability in terms of weighted formulae for modelling multi-relational data. In this paper, we develop a learning algorithm for RLR models. Learning an RLR model from data consists of two steps: 1- learning the set of formulae to be used in the model (a.k.a. structure learning) and learning the weight of each formula (a.k.a. parameter learning). For structure learning, we deploy Schmidt and Murphy's hierarchical assumption: first we learn a model with simple formulae, then more complex formulae are added iteratively only if all their sub-formulae have proven effective in previous learned models. For parameter learning, we convert the problem into a non-relational learning problem and use an off-the-shelf logistic regression learning algorithm from Weka, an open-source machine learning tool, to learn the weights. We also indicate how hidden features about the individuals can be incorporated into RLR to boost the learning performance. We compare our learning algorithm to other structure and parameter learning algorithms in the literature, and compare the performance of RLR models to standard logistic regression and RDN-Boost on a modified version of the MovieLens data-set.

View on arXiv
Comments on this paper