ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.07953
46
279
v1v2 (latest)

Bidirectional Recurrent Neural Networks for Medical Event Detection in Electronic Health Records

25 June 2016
Abhyuday N. Jagannatha
Hong-ye Yu
    BDL
ArXiv (abs)PDFHTML
Abstract

Sequence labeling for extraction of medical events and their attributes from unstructured text in Electronic Health Record (EHR) notes is a key step towards semantic understanding of EHRs. It has important applications in health informatics including pharmacovigilance and drug surveillance. The state of the art supervised machine learning models in this domain are based on Conditional Random Fields (CRFs) with features calculated from fixed context windows. In this application, we explored various recurrent neural network frameworks and show that they significantly outperformed the CRF models.

View on arXiv
Comments on this paper