ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.07902
22
35

Intrinsic Subspace Evaluation of Word Embedding Representations

25 June 2016
Yadollah Yaghoobzadeh
Hinrich Schütze
ArXivPDFHTML
Abstract

We introduce a new methodology for intrinsic evaluation of word representations. Specifically, we identify four fundamental criteria based on the characteristics of natural language that pose difficulties to NLP systems; and develop tests that directly show whether or not representations contain the subspaces necessary to satisfy these criteria. Current intrinsic evaluations are mostly based on the overall similarity or full-space similarity of words and thus view vector representations as points. We show the limits of these point-based intrinsic evaluations. We apply our evaluation methodology to the comparison of a count vector model and several neural network models and demonstrate important properties of these models.

View on arXiv
Comments on this paper