ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.07901
41
75

Corpus-level Fine-grained Entity Typing Using Contextual Information

25 June 2016
Yadollah Yaghoobzadeh
Hinrich Schütze
ArXivPDFHTML
Abstract

This paper addresses the problem of corpus-level entity typing, i.e., inferring from a large corpus that an entity is a member of a class such as "food" or "artist". The application of entity typing we are interested in is knowledge base completion, specifically, to learn which classes an entity is a member of. We propose FIGMENT to tackle this problem. FIGMENT is embedding-based and combines (i) a global model that scores based on aggregated contextual information of an entity and (ii) a context model that first scores the individual occurrences of an entity and then aggregates the scores. In our evaluation, FIGMENT strongly outperforms an approach to entity typing that relies on relations obtained by an open information extraction system.

View on arXiv
Comments on this paper