ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.07548
46
112

A Sentence Compression Based Framework to Query-Focused Multi-Document Summarization

24 June 2016
Lu Wang
Hema Raghavan
Vittorio Castelli
Radu Florian
Claire Cardie
ArXiv (abs)PDFHTML
Abstract

We consider the problem of using sentence compression techniques to facilitate query-focused multi-document summarization. We present a sentence-compression-based framework for the task, and design a series of learning-based compression models built on parse trees. An innovative beam search decoder is proposed to efficiently find highly probable compressions. Under this framework, we show how to integrate various indicative metrics such as linguistic motivation and query relevance into the compression process by deriving a novel formulation of a compression scoring function. Our best model achieves statistically significant improvement over the state-of-the-art systems on several metrics (e.g. 8.0% and 5.4% improvements in ROUGE-2 respectively) for the DUC 2006 and 2007 summarization task.

View on arXiv
Comments on this paper