ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.06611
28
26

Divide and Conquer: An Incremental Sparsity Promoting Compressive Sampling Approach for Polynomial Chaos Expansions

21 June 2016
Negin Alemazkoor
Hadi Meidani
ArXivPDFHTML
Abstract

This paper introduces an efficient sparse recovery approach for Polynomial Chaos (PC) expansions, which promotes the sparsity by breaking the dimensionality of the problem. The proposed algorithm incrementally explores sub-dimensional expansions for a sparser recovery, and shows success when removal of uninfluential parameters that results in a lower coherence for measurement matrix, allows for a higher order and/or sparser expansion to be recovered. The incremental algorithm effectively searches for the sparsest PC approximation, and not only can it decrease the prediction error, it can also reduce the dimensionality of PCE model. Four numerical examples are provided to demonstrate the validity of the proposed approach. The results from these examples show that the incremental algorithm substantially outperforms conventional compressive sampling approaches for PCE, in terms of both solution sparsity and prediction error.

View on arXiv
Comments on this paper