ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.06593
27
63

A Distributed Newton Method for Large Scale Consensus Optimization

21 June 2016
Rasul Tutunov
Haitham Bou-Ammar
Ali Jadbabaie
ArXivPDFHTML
Abstract

In this paper, we propose a distributed Newton method for consensus optimization. Our approach outperforms state-of-the-art methods, including ADMM. The key idea is to exploit the sparsity of the dual Hessian and recast the computation of the Newton step as one of efficiently solving symmetric diagonally dominant linear equations. We validate our algorithm both theoretically and empirically. On the theory side, we demonstrate that our algorithm exhibits superlinear convergence within a neighborhood of optimality. Empirically, we show the superiority of this new method on a variety of machine learning problems. The proposed approach is scalable to very large problems and has a low communication overhead.

View on arXiv
Comments on this paper