ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.05545
31
30

Universal, Unsupervised (Rule-Based), Uncovered Sentiment Analysis

17 June 2016
David Vilares
Carlos Gómez-Rodríguez
Miguel A. Alonso
ArXivPDFHTML
Abstract

We present a novel unsupervised approach for multilingual sentiment analysis driven by compositional syntax-based rules. On the one hand, we exploit some of the main advantages of unsupervised algorithms: (1) the interpretability of their output, in contrast with most supervised models, which behave as a black box and (2) their robustness across different corpora and domains. On the other hand, by introducing the concept of compositional operations and exploiting syntactic information in the form of universal dependencies, we tackle one of their main drawbacks: their rigidity on data that are structured differently depending on the language concerned. Experiments show an improvement both over existing unsupervised methods, and over state-of-the-art supervised models when evaluating outside their corpus of origin. Experiments also show how the same compositional operations can be shared across languages. The system is available at http://www.grupolys.org/software/UUUSA/

View on arXiv
Comments on this paper