ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.02279
28
2
v1v2v3 (latest)

Semi-supervised structured output prediction by local linear regression and sub-gradient descent

7 June 2016
Yihua Zhou
Jingbin Wang
Lihui Shi
Xin Du
Haoxiang Wang
Guilherme Silva
Guilherme Silva
ArXiv (abs)PDFHTML
Abstract

We propose a novel semi-supervised structured out- put prediction method based on local linear regression in this paper. The existing semi-supervise structured output prediction methods learn a global predictor for all the data points in a data set, which ignores the differences of local distributions of the data set, and the effects to the structured output prediction. To solve this problem, we propose to learn the missing structured outputs and local predictors for neighborhoods of different data points jointly. Using the local linear regression strategy, in the neighborhood of each data point, we propose to learn a local linear predictor by minimizing both the complexity of the predictor and the upper bound of the structured prediction loss. The minimization problem is solved by sub-gradient descent algorithms. We conduct experiments over two benchmark data sets, and the results show the advantages of the proposed method.

View on arXiv
Comments on this paper