ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.01990
43
12

Neural Network Models for Implicit Discourse Relation Classification in English and Chinese without Surface Features

7 June 2016
Attapol T. Rutherford
Vera Demberg
Nianwen Xue
ArXiv (abs)PDFHTML
Abstract

Inferring implicit discourse relations in natural language text is the most difficult subtask in discourse parsing. Surface features achieve good performance, but they are not readily applicable to other languages without semantic lexicons. Previous neural models require parses, surface features, or a small label set to work well. Here, we propose neural network models that are based on feedforward and long-short term memory architecture without any surface features. To our surprise, our best configured feedforward architecture outperforms LSTM-based model in most cases despite thorough tuning. Under various fine-grained label sets and a cross-linguistic setting, our feedforward models perform consistently better or at least just as well as systems that require hand-crafted surface features. Our models present the first neural Chinese discourse parser in the style of Chinese Discourse Treebank, showing that our results hold cross-linguistically.

View on arXiv
Comments on this paper