ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.00622
17
16

Consistent order estimation for nonparametric Hidden Markov Models

2 June 2016
Luc Lehéricy
ArXivPDFHTML
Abstract

We consider the problem of estimating the number of hidden states (the order) of a nonparametric hidden Markov model (HMM). We propose two different methods and prove their almost sure consistency without any prior assumption, be it on the order or on the emission distributions. This is the first time a consistency result is proved in such a general setting without using restrictive assumptions such as a priori upper bounds on the order or parametric restrictions on the emission distributions. Our main method relies on the minimization of a penalized least squares criterion. In addition to the consistency of the order estimation, we also prove that this method yields rate minimax adaptive estimators of the parameters of the HMM - up to a logarithmic factor. Our second method relies on estimating the rank of a matrix obtained from the distribution of two consecutive observations. Finally, numerical experiments are used to compare both methods and study their ability to select the right order in several situations.

View on arXiv
Comments on this paper