137
56

Self-Paced Learning: an Implicit Regularization Perspective

Abstract

Self-paced learning (SPL) mimics the cognitive mechanism of humans and animals that gradually learns from easy to hard samples. One key issue in SPL is to obtain better weighting strategy that is determined by the minimizer functions. Existing methods usually pursue this by artificially designing the explicit form of regularizers. In this paper, we focus on the minimizer functions, and study a group of new regularizers, named self-paced implicit regularizers that are derived from convex conjugacy. Based on the multiplicative form of half-quadratic optimization, convex and non-convex functions induced minimizer functions for the implicit regularizers are developed. And a general framework (named SPL-IR) for SPL is developed accordingly. We further analyze the relation between SPLIR and half-quadratic optimization. We implement SPL-IR to matrix factorization and multi-view clustering. Experimental results on both synthetic and real-world databases corroborate our ideas and demonstrate the effectiveness of implicit regularizers.

View on arXiv
Comments on this paper