ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07333
40
177

Combining Recurrent and Convolutional Neural Networks for Relation Classification

24 May 2016
Ngoc Thang Vu
Heike Adel
Pankaj Gupta
Hinrich Schütze
ArXivPDFHTML
Abstract

This paper investigates two different neural architectures for the task of relation classification: convolutional neural networks and recurrent neural networks. For both models, we demonstrate the effect of different architectural choices. We present a new context representation for convolutional neural networks for relation classification (extended middle context). Furthermore, we propose connectionist bi-directional recurrent neural networks and introduce ranking loss for their optimization. Finally, we show that combining convolutional and recurrent neural networks using a simple voting scheme is accurate enough to improve results. Our neural models achieve state-of-the-art results on the SemEval 2010 relation classification task.

View on arXiv
Comments on this paper