ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.07314
11
115

DeepText: A Unified Framework for Text Proposal Generation and Text Detection in Natural Images

24 May 2016
Zhuoyao Zhong
Lianwen Jin
Shuye Zhang
Ziyong Feng
    ObjD
ArXivPDFHTML
Abstract

In this paper, we develop a novel unified framework called DeepText for text region proposal generation and text detection in natural images via a fully convolutional neural network (CNN). First, we propose the inception region proposal network (Inception-RPN) and design a set of text characteristic prior bounding boxes to achieve high word recall with only hundred level candidate proposals. Next, we present a powerful textdetection network that embeds ambiguous text category (ATC) information and multilevel region-of-interest pooling (MLRP) for text and non-text classification and accurate localization. Finally, we apply an iterative bounding box voting scheme to pursue high recall in a complementary manner and introduce a filtering algorithm to retain the most suitable bounding box, while removing redundant inner and outer boxes for each text instance. Our approach achieves an F-measure of 0.83 and 0.85 on the ICDAR 2011 and 2013 robust text detection benchmarks, outperforming previous state-of-the-art results.

View on arXiv
Comments on this paper