ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.06921
16
75

Generative Choreography using Deep Learning

23 May 2016
L. Crnkovic-Friis
L. Crnkovic-Friis
    GAN
ArXivPDFHTML
Abstract

Recent advances in deep learning have enabled the extraction of high-level features from raw sensor data which has opened up new possibilities in many different fields, including computer generated choreography. In this paper we present a system chor-rnn for generating novel choreographic material in the nuanced choreographic language and style of an individual choreographer. It also shows promising results in producing a higher level compositional cohesion, rather than just generating sequences of movement. At the core of chor-rnn is a deep recurrent neural network trained on raw motion capture data and that can generate new dance sequences for a solo dancer. Chor-rnn can be used for collaborative human-machine choreography or as a creative catalyst, serving as inspiration for a choreographer.

View on arXiv
Comments on this paper