51
3

Sub-optimality of some continuous shrinkage priors

Abstract

Two-component mixture priors provide a traditional way to induce sparsity in high-dimensional Bayes models. However, several aspects of such a prior, including computational complexities in high-dimensions, interpretation of exact zeros and non-sparse posterior summaries under standard loss functions, has motivated an amazing variety of continuous shrinkage priors, which can be expressed as global-local scale mixtures of Gaussians. Interestingly, we demonstrate that many commonly used shrinkage priors, including the Bayesian Lasso, do not have adequate posterior concentration in high-dimensional settings.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.