ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.03481
13
176

Tweet2Vec: Character-Based Distributed Representations for Social Media

11 May 2016
Bhuwan Dhingra
Zhong Zhou
Dylan J. Fitzpatrick
Michael Muehl
William W. Cohen
    VLM
ArXivPDFHTML
Abstract

Text from social media provides a set of challenges that can cause traditional NLP approaches to fail. Informal language, spelling errors, abbreviations, and special characters are all commonplace in these posts, leading to a prohibitively large vocabulary size for word-level approaches. We propose a character composition model, tweet2vec, which finds vector-space representations of whole tweets by learning complex, non-local dependencies in character sequences. The proposed model outperforms a word-level baseline at predicting user-annotated hashtags associated with the posts, doing significantly better when the input contains many out-of-vocabulary words or unusual character sequences. Our tweet2vec encoder is publicly available.

View on arXiv
Comments on this paper