ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.02536
60
45
v1v2v3 (latest)

Random Fourier Features for Operator-Valued Kernels

9 May 2016
Romain Brault
Florence dÁlché-Buc
Markus Heinonen
ArXiv (abs)PDFHTML
Abstract

Devoted to multi-task learning and structured output learning, operator-valued kernels provide a flexible tool to build vector-valued functions in the context of Reproducing Kernel Hilbert Spaces. To scale up these methods, we extend the celebrated Random Fourier Feature methodology to get an approximation of operator-valued kernels. We propose a general principle for Operator-valued Random Fourier Feature construction relying on a generalization of Bochner's theorem for translation-invariant operator-valued Mercer kernels. We prove the uniform convergence of the kernel approximation for bounded and unbounded operator random Fourier features using appropriate Bernstein matrix concentration inequality. An experimental proof-of-concept shows the quality of the approximation and the efficiency of the corresponding linear models on example datasets.

View on arXiv
Comments on this paper