ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.00894
15
116

Recurrent Convolutional Neural Network Regression for Continuous Pain Intensity Estimation in Video

3 May 2016
Jing Zhou
Xiaopeng Hong
Zhicheng Zhao
Guoying Zhao
ArXivPDFHTML
Abstract

Automatic pain intensity estimation possesses a significant position in healthcare and medical field. Traditional static methods prefer to extract features from frames separately in a video, which would result in unstable changes and peaks among adjacent frames. To overcome this problem, we propose a real-time regression framework based on the recurrent convolutional neural network for automatic frame-level pain intensity estimation. Given vector sequences of AAM-warped facial images, we used a sliding-window strategy to obtain fixed-length input samples for the recurrent network. We then carefully design the architecture of the recurrent network to output continuous-valued pain intensity. The proposed end-to-end pain intensity regression framework can predict the pain intensity of each frame by considering a sufficiently large historical frames while limiting the scale of the parameters within the model. Our method achieves promising results regarding both accuracy and running speed on the published UNBC-McMaster Shoulder Pain Expression Archive Database.

View on arXiv
Comments on this paper