ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.08088
24
25

Detecting Violence in Video using Subclasses

27 April 2016
Xirong Li
Yujia Huo
Jieping Xu
Qin Jin
    AAML
ArXivPDFHTML
Abstract

This paper attacks the challenging problem of violence detection in videos. Different from existing works focusing on combining multi-modal features, we go one step further by adding and exploiting subclasses visually related to violence. We enrich the MediaEval 2015 violence dataset by \emph{manually} labeling violence videos with respect to the subclasses. Such fine-grained annotations not only help understand what have impeded previous efforts on learning to fuse the multi-modal features, but also enhance the generalization ability of the learned fusion to novel test data. The new subclass based solution, with AP of 0.303 and P100 of 0.55 on the MediaEval 2015 test set, outperforms several state-of-the-art alternatives. Notice that our solution does not require fine-grained annotations on the test set, so it can be directly applied on novel and fully unlabeled videos. Interestingly, our study shows that motion related features, though being essential part in previous systems, are dispensable.

View on arXiv
Comments on this paper