ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.07269
6
196

CMA-ES for Hyperparameter Optimization of Deep Neural Networks

25 April 2016
I. Loshchilov
Frank Hutter
    BDL
ArXivPDFHTML
Abstract

Hyperparameters of deep neural networks are often optimized by grid search, random search or Bayesian optimization. As an alternative, we propose to use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which is known for its state-of-the-art performance in derivative-free optimization. CMA-ES has some useful invariance properties and is friendly to parallel evaluations of solutions. We provide a toy example comparing CMA-ES and state-of-the-art Bayesian optimization algorithms for tuning the hyperparameters of a convolutional neural network for the MNIST dataset on 30 GPUs in parallel.

View on arXiv
Comments on this paper