44
22

Inherit Differential Privacy in Distributed Setting: Multiparty Randomized Function Computation

Abstract

How to achieve differential privacy in the distributed setting, where the dataset is distributed among the distrustful parties, is an important problem. We consider in what condition can a protocol inherit the differential privacy property of a function it computes. The heart of the problem is the secure multiparty computation of randomized function. A notion \emph{obliviousness} is introduced, which captures the key security problems when computing a randomized function from a deterministic one in the distributed setting. By this observation, a sufficient and necessary condition about computing a randomized function from a deterministic one is given. The above result can not only be used to determine whether a protocol computing differentially private function is secure, but also be used to construct secure one. Then we prove that the differential privacy property of a function can be inherited by the protocol computing it if the protocol privately computes it. A composition theorem of differentially private protocols is also presented. We also construct some protocols to generate random variate in the distributed setting, such as the uniform random variates and the inversion method. By using these fundamental protocols, we construct protocols of the Gaussian mechanism, the Laplace mechanism and the Exponential mechanism. Importantly, all these protocols satisfy obliviousness and so can be proved to be secure in a simulation based manner. We also provide a complexity bound of computing randomized function in the distribute setting. Finally, to show that our results are fundamental and powerful to multiparty differential privacy, we construct a differentially private empirical risk minimization protocol.

View on arXiv
Comments on this paper