ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.02130
297
25
v1v2 (latest)

Quantile Processes for Semi and Nonparametric Regression

7 April 2016
Shih-Kang Chao
S. Volgushev
Guang Cheng
ArXiv (abs)PDFHTML
Abstract

A collection of quantile curves provides a complete picture of conditional distributions. Properly centered and scaled versions of estimated curves at various quantile levels give rise to the so-called quantile regression process (QRP). In this paper, we establish weak convergence of QRP in a general series approximation framework, which includes linear models with increasing dimension, nonparametric models and partial linear models. An interesting consequence is obtained in the last class of models, where parametric and non-parametric estimators are shown to be asymptotically independent. Applications of our general process convergence results include the construction of non-crossing quantile curves and the estimation of conditional distribution functions. As a result of independent interest, we obtain a series of Bahadur representations with exponential bounds for tail probabilities of all remainder terms. Bounds of this kind are potentially useful in analyzing statistical inference procedures under divide-and-conquer setup.

View on arXiv
Comments on this paper