ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.02038
12
24

Sentence Level Recurrent Topic Model: Letting Topics Speak for Themselves

7 April 2016
Fei Tian
Bin Gao
Di He
Tie-Yan Liu
    LRM
    BDL
ArXivPDFHTML
Abstract

We propose Sentence Level Recurrent Topic Model (SLRTM), a new topic model that assumes the generation of each word within a sentence to depend on both the topic of the sentence and the whole history of its preceding words in the sentence. Different from conventional topic models that largely ignore the sequential order of words or their topic coherence, SLRTM gives full characterization to them by using a Recurrent Neural Networks (RNN) based framework. Experimental results have shown that SLRTM outperforms several strong baselines on various tasks. Furthermore, SLRTM can automatically generate sentences given a topic (i.e., topics to sentences), which is a key technology for real world applications such as personalized short text conversation.

View on arXiv
Comments on this paper