57
29
v1v2v3 (latest)

Correlated and Individual Multi-Modal Deep Learning for RGB-D Object Recognition

Abstract

In this paper, we propose a new correlated and individual multi-modal deep learning (CIMDL) method for RGB-D object recognition. Unlike most conventional RGB-D object recognition methods which extract features from the RGB and depth channels individually, our CIMDL jointly learns feature representations from raw RGB-D data with a pair of deep neural networks, so that the sharable and modal-specific information can be simultaneously exploited. Specifically, we construct a pair of deep convolutional neural networks (CNNs) for the RGB and depth data, and concatenate them at the top layer of the network with a loss function which learns a new feature space where both correlated part and the individual part of the RGB-D information are well modelled. The parameters of the whole networks are updated by using the back-propagation criterion. Experimental results on two widely used RGB-D object image benchmark datasets clearly show that our method outperforms state-of-the-arts.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.