ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.01643
24
4
v1v2 (latest)

Information Utilization Ratio in Heuristic Optimization Algorithms

6 April 2016
Junzhi Li
Ying Tan
ArXiv (abs)PDFHTML
Abstract

Heuristic algorithms are able to optimize objective functions efficiently because they use intelligently the information about the objective functions. Thus, information utilization is critical to the performance of heuristics. However, the concept of information utilization has remained vague and abstract because there is no reliable metric to reflect the extent to which the information about the objective function is utilized by heuristic algorithms. In this paper, the metric of information utilization ratio (IUR) is defined, which is the ratio of the utilized information quantity over the acquired information quantity in the search process. The IUR proves to be well-defined. Several examples of typical heuristic algorithms are given to demonstrate the procedure of calculating the IUR. Empirical evidences on the correlation between the IUR and the performance of a heuristic are also provided. The IUR can be an index of how finely an algorithm is designed and guide the invention of new heuristics and the improvement of existing ones.

View on arXiv
Comments on this paper