ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.00478
32
9
v1v2 (latest)

State Space Model based Trust Evaluation over Wireless Sensor Networks: An Iterative Particle Filter Approach

2 April 2016
Bin Liu
Shi Cheng
ArXiv (abs)PDFHTML
Abstract

In this paper we propose a state space modeling approach for trust evaluation in wireless sensor networks. In our state space trust model (SSTM), each sensor node is associated with a trust metric, which measures to what extent the data transmitted from this node would better be trusted by the server node. Given the SSTM, we translate the trust evaluation problem to be a nonlinear state filtering problem. To estimate the state based on the SSTM, a component-wise iterative state inference procedure is proposed to work in tandem with the particle filter, and thus the resulting algorithm is termed as iterative particle filter (IPF). The computational complexity of the IPF algorithm is theoretically linearly related with the dimension of the state. This property is desirable especially for high dimensional trust evaluation and state filtering problems. The performance of the proposed algorithm is evaluated by both simulations and real data analysis.

View on arXiv
Comments on this paper