ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.09246
181
2986
v1v2v3 (latest)

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles

30 March 2016
M. Noroozi
Paolo Favaro
    SSL
ArXiv (abs)PDFHTML
Abstract

In this paper we study the problem of image representation learning without human annotation. By following the principles of self-supervision, we build a convolutional neural network (CNN) that can be trained to solve Jigsaw puzzles as a pretext task, which requires no manual labeling, and then later repurposed to solve object classification and detection. To maintain the compatibility across tasks we introduce the context-free network (CFN), a siamese-ennead CNN. The CFN takes image tiles as input and explicitly limits the receptive field (or context) of its early processing units to one tile at a time. We show that the CFN is a more compact version of AlexNet, but with the same semantic learning capabilities. By training the CFN to solve Jigsaw puzzles, we learn both a feature mapping of object parts as well as their correct spatial arrangement. Our experimental evaluations show that the learned features capture semantically relevant content. After training our CFN features to solve jigsaw puzzles on the training set of the ILSRV 2012 dataset, we transfer them via fine-tuning on the combined training and validation set of Pascal VOC 2007 for object detection (via fast RCNN) and classification. The performance of the CFN features is 51.8% for detection and 68.6% for classification, which is the highest among features obtained via unsupervised learning, and closing the gap with features obtained via supervised learning (56.5% and 78.2% respectively). In object classification the CFN features achieve 38.1% on the ILSRV 2012 validation set, after fine-tuning only the fully connected layers on the training set.

View on arXiv
Comments on this paper