ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.09176
20
114

Enhanced computation method of topological smoothing on shared memory parallel machines

30 March 2016
Gilles Bertrand
Mohamed Akil
ArXiv (abs)PDFHTML
Abstract

To prepare images for better segmentation, we need preprocessing applications, such as smoothing, to reduce noise. In this paper, we present an enhanced computation method for smoothing 2D object in binary case. Unlike existing approaches, proposed method provides a parallel computation and better memory management, while preserving the topology (number of connected components) of the original image by using homotopic transformations defined in the framework of digital topology. We introduce an adapted parallelization strategy called split, distribute and merge (SDM) strategy which allows efficient parallelization of a large class of topological operators. To achieve a good speedup and better memory allocation, we cared about task scheduling and managing. Distributed work during smoothing process is done by a variable number of threads. Tests on 2D grayscale image (512*512), using shared memory parallel machine (SMPM) with 8 CPU cores (2 Xeon E5405 running at frequency of 2 GHz), showed an enhancement of 5.2 with cache success rate of 70%.

View on arXiv
Comments on this paper