ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.08815
8
5

Spectral M-estimation with Applications to Hidden Markov Models

29 March 2016
Dustin Tran
Minjae Kim
Finale Doshi-Velez
ArXivPDFHTML
Abstract

Method of moment estimators exhibit appealing statistical properties, such as asymptotic unbiasedness, for nonconvex problems. However, they typically require a large number of samples and are extremely sensitive to model misspecification. In this paper, we apply the framework of M-estimation to develop both a generalized method of moments procedure and a principled method for regularization. Our proposed M-estimator obtains optimal sample efficiency rates (in the class of moment-based estimators) and the same well-known rates on prediction accuracy as other spectral estimators. It also makes it straightforward to incorporate regularization into the sample moment conditions. We demonstrate empirically the gains in sample efficiency from our approach on hidden Markov models.

View on arXiv
Comments on this paper