Exponential Concentration of a Density Functional Estimator

Abstract
We analyze a plug-in estimator for a large class of integral functionals of one or more continuous probability densities. This class includes important families of entropy, divergence, mutual information, and their conditional versions. For densities on the -dimensional unit cube that lie in a -H\"older smoothness class, we prove our estimator converges at the rate . Furthermore, we prove the estimator is exponentially concentrated about its mean, whereas most previous related results have proven only expected error bounds on estimators.
View on arXivComments on this paper